Bogazigi University
Department of Physics
Phys 311/407 Summer 2014
Problem Set #9 Solutions

Answer 1:

The energy of an electron in an infinite square well is given by:
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where m is the electron mass, 0.511 MeV/c?, and n is the state number:
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a) The ground state energy is Fj:
FEi ~ 150 eV

b) The first excited state energy is Eb:
E5 ~ 150 x 2% = 600 eV

Answer 2:
The energy of a particle in an infinite square well is
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n = 1 for the ground state. Then, we write conservation of energy:

Einitial = Efinal
E, = E\+E,
R
Answer 3:
a) Let us define:
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Then the wave function given in this question can be written as:

Y(x,t) = Pa(x,t) + P3(z,t)
The time dependent Schrodinger Equation is:
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V(x,t) = 0 within the well.
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Using the definitions given in equation (1), we can rewrite this equation in terms of 1 3(x):
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Note that ¥9(x) and 13(z) are the solutions for time independent Schrédinger Equation for an infinite
square well. Thus:
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Thus, the terms inside the curly brackets in equation (2) are equal to zero, which yields:
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Thus, the wave function satisfies the time dependent Schrédinger Equation.

b) The integrated probability over the allowed region should be 1:
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The first two terms are unity due to being the definition of normalization equation for the time indepen-
dent wave functions for each state:
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The third term vanishes, because ¥9(x) and 13(z) are orthogonal to each other (shown in class):
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Thus, we get
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Thus, the given wave function is normalized. That means that the particle is always between 0 < x < L
as one expects for an infinite square well.

c) The probability in question is:
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We use equation (3) found in part b), with the proper integral limits: z =0 — L/2
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Since to(x) and ¢3(x) are symmetric around L/2, the first and the second terms give 1/2:
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The probability of being at the left half of the well and right half of the well fluctuates: (left <> right)
with a frequency of w = (E3 — Es)/h, which means that sometimes (with the given frequency) finding
the particle at the left half of the well is larger than the right side, and vice versa...
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Answer 4:
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We do not have a golden rule to find the lowest energy states for an asymmetric 3D box. We have
to find this by trial-and-error. However, we can reduce the number of trials by examining the relative

contribution of each term.

Changing n, —the dominant term— from 1 to 2, increases the unitless number in the parenthesis by
4(2%2 — 12) = 12. The minimum increase in n, to compensate this is n, = 1 — 4 which changes the first
term by 42 — 12 = 15 > 12. And similarly, n, = 1 — 3 gives 3(3% — 12) = 24 > 12. Thus, we try all
combinations of n, = {1,2,3,4}, n, = {1,2,3}, n, = {1,2} which should give the first 4 x 3 x 2 = 24
lowest energy states, then we sort them out:
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Luckily, the next degenerate state is within this first 24 states:
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