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Answer 1:
We write the normalization equation:
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Since, the wave function includes an absolute value function, we have to divide the integrant into two
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By symmetry, both integrals are equal to each other, thus we evaluate one of them and multiply it by

parts:
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Answer 2:

Note that, we derived the fourier transformation equations in class between 1 (z) <> g(k). Using p = hk,
dp = hdk, we can:
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which gives us:
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or, equivalently:
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[Note that, we ignored the phase, ¢?, while dealing with the magnitude function above. This is no
concern for us, as it will satisfy the Scrodinger equation with or without a phase, which is a constant .|

Now, we can rewrite our Fourier transformation using momentum wave function:
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Thus, we get:
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Now, we can perform the transformation:
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then, we apply a change of variable, p — —p for the first integral, and swap the limits:
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Normalization check:
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Answer 3:
Both 9, (p) and 9 (z) are symmetric functions thus (z) =0, (p) =0
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Thus, the uncertainty in position is:
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Thus, the uncertainty in momentum is:
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So, we get:
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which is in agreement with the uncertainty principle.

Answer 4:
This is quite similar to the infinite square well. The wave function inside the well is given by

Y(x) = C cos(kx) or Y(x) = Csin(kx)

where
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k= h2 = h?
The only difference between this wave number and the one for the infinite square well is: £ — E + V.
Thus, we simply write down the energy as follows:
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Thus, n can only be 1, the ground state.

Answer 5:
The wave function is given:
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The first partial derivative of the wave function:
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The second partial derivative of the wave function:
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Before writing the Schrédinger equation, let us write the potential function in terms of a:
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Then, the Schrodinger equation becomes:
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Both sides of this equation are constants, thus this wave function satisfies the Schrodinger equation for
the simple harmonic oscillator potential.

Now, we can substitute a = 5;°:
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which gives the energy for the third exited state (n =4): E, = (n — 1/2)hw



