Phys 443 Fall 2011

$\begin{array}{c} \text{Problem Set 2} \\ \text{Due on October 28}^{\text{th}}, \ 2011 \end{array}$

Problem 1 - 10 pts

You want to bombard a circular metal sheet with radius of 1 m with an electron gun 0.5 m away from the center of the sheet as shown below:

Direction of the gun can be defined using θ and ϕ . We want to hit the sheet with a uniform distribution, i.e. electron marks (red dots) on the sheet are uniformly distributed.

- a) Write down $P_{\theta}(\theta)P_{\phi}(\phi)d\theta d\phi$ which yields such a distribution.
- b) Find $\theta = f(x_1)$, and $\phi = g(x_2)$ functions which yields the desired $P_{\theta}(\theta)d\theta$ and $P_{\phi}(\phi)d\phi$ distributions for $x_{1,2}$ uniform random numbers between [0, 1].
- c) Write a code to create 5000 (θ, ϕ) direction pairs, and mark them on a plot on the x-y plane.

Problem 2 - 10 pts

Consider the following probability distribution:

$$w(x) = C(x^2 + 2x + 2)e^{-x}$$

where C is the normalization constant, x is defined between [0, 10].

- a) Find the normalization constant C.
- b) Write a code to generate 10,000 numbers with this probability distribution using Metropolis *et. al.* algorithm.
- c) Make a histogram with 100 bins of these numbers.
- d) Make a plot of w(x) for 0 < x < 10, and superimpose the normalized histogram with this curve to check the validity of your distribution.