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Project 1

Due on November 18th, 2011

Semiclassical Quantization of Molecular Vibration

Definition of problem: Consider the bond of a diatomic molecule, such as H2. Two nuclei are
bound together by the e− “cloud.” It is possible to model a potential describing this binding, and
such a potential is seen in the following sketch:
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This indicates a repulsive force when the two nuclei are close to each other, and attractive force if
they are away from each other. Thus, if the total energy of the system is E, then the nuclei vibrates
between rin and rout.

Quantum mechanics dictates that there are discrete levels of allowed energies for this sys-
tem. The goal of the project is finding those levels numerically using an empirical model
of V (r), and comparing the results with the observed values.

One dimensional Schröedinger equation yields a solution for such a system with total energy E:[
− h̄2

2m

d2

dr2
+ V (r)

]
ψ = Eψ

where m is the reduced mass of the system (1/m = 1/m1 + 1/m2).

Classically, this system oscillates between rin and rout at any −V0 < E < 0, provided that the total
energy is conserved:

Kinetic Energy ⇐⇒ Potential energy

where, the total energy, E = p2

2m + V (r) is constant. Then, the momentum p(r) is simply:

p(r) = [2m(E − V (r))]1/2

Then, the trajectory defined by p(r) is shown as in the following sketch:
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To quantize this, we write the dimensionless action at a given energy E:

S(E) =

∮
k(r) dr

where k(r) = h̄−1 p(r) is de Broglie wave number. Note that, the path integral is written for full
cycle. Since, the momentum, p(r) above the r–axis and below the r–axis shown in the above sketch
are symmetrical, we can write the same integral for one of these pieces, and multiply it by two:

S(E) =

∮
k(r) dr = 2

∫ rout

rin

k(r) dr

Thus, we get

S(E) = 2

(
2m

h̄2

)1/2 ∫ rout

rin

[E − V (r)]1/2 dr (1)

Then, the quantization of the problem is done by stating that the de Braglie wave number should be
(n+ 1

2)2π, where n are nonnegative integers. Thus, we get:

S(En) =

(
n+

1

2

)
2π (2)

For a given state, n, we can solve this numerically for En once we know the potential function V (r).
We know the energy levels of these states experimentally, and it is listed in the following table:

n En n En
(eV) (eV)

0 -4.477 8 -1.151
1 -3.962 9 -0.867
2 -3.475 10 -0.615
3 -3.017 11 -0.400
4 -2.587 12 -0.225
5 -2.185 13 -0.094
6 -1.811 14 -0.017
7 -1.466



An early attempt to model V (r) was done by Lennard-Jones as:

V (r) = 4V0

[(
a

r

)12

−
(
a

r

)6
]

For simplicity, let’s define the following unitless quantities:

ε ≡ E

V0
x ≡ r

a
γ ≡

(
2ma2V0

h̄2

)1/2

Then, we define the scaled potential as:

v(x) = 4

(
1

x12
− 1

x6

)
Note that, γ defines the quantum nature of the system.

γ = large → classical system

γ = small → quantum system

Then, we can write the Equation 2 using the above definition as:

s(εn) =
1

2
S(En)

s(εn) = γ

∫ xout

xin

[εn − v(x)]1/2 dx = (n+ 1/2)π (3)

Part 1

Consider the H2 molecule:

γ = 21.7

V0 = 4.747 eV

Question 1: Find xmin analytically for which dv(x)
dx = 0.

Question 2: Analytically, find the solutions for ε− v(x) = 0. These are your xin and xout.

Question 3: Write a function that calculates s(ε) numerically. Use extended formula for the inte-
gration, and take N = 1000. Note that, the only input to that function is going to be ε, the rest of
the variables in this function are constants. You determine the integral limits analytically using the
information in Question 2 for the given ε. The function will look like:

double action(double e) C language1

Question 4: Draw2 s(ε) as a function of ε for the range of ε = (−1, 0). Observe the behavior of the
action.

1Note that you can use any programming language. Here, the C prototype is given.
2You can use Matlab or your favorite utility for graphing.



Question 5: Now, define another function that uses action as:

f(ε, n) = s(ε)− (n+ 1/2)π

Note that this function vanishes for εn and n according to Equation 3:

f(εn, n) = 0

Call this function “funct(e,n)”.

Question 6: Now, write a root finding function that finds the root of f(ε, n) for the given n. Call
this function “normalized energy”, such as:

double normalized energy(int n) C language

Explain why using Newton-Raphson method may not be desirable (Hint: Use s(ε) plot you made for
explaining this.). Use binary-search method for root finding. Now, you can solve the Equation 3 for
εn for a given n. Then, En = V0 εn which is the nth energy level for this system.

Question 7: Call your normalized energy function for n = [0, · · · , 5], and make a table showing
En for these 6 energy levels. Compare your results with the experimental values shown in the above
table.

Question 8: Try calling normalized energy function for n = 6. Does it fail? Explain why?



Part 2

In the previous part, we have seen that Lennard-Jones potential yields marginally reasonable solutions
for the bound state energies only when n is small, and fails to give any result for n > 5. So, do not
be surprised if you could not get numbers that are close to the experimental values in Part 1.

It is clear that a better analytic form of the potential with more parameters is required to produce
both low energy (vibrations) solutions and high energy solutions simultaneously.

One such potential is known as the Morse potential:

V (r) = V0

[[
1− e−(r−rmin)/β

]2
− 1

]
which has two parameters besides V0: rmin is used to define the lowest point of the potential, and

β is used to adjust the width of the potential. rmin is experimentally known to be 0.74166
◦
A. β is

unknown and can be adjusted as a fit parameter. The goal of this part is finding the value of β for
which the solution for E0 (ground state) is exactly equal to the experimental value, and finding the
rest of the energy levels using this β value.

Use the following units for the constants we need:

h̄ = 6.5821× 10−16 eV sec

V0 = 4.747 eV

rmin = 0.74166
◦
A

m = 1.04222× 10−28 eV/(
◦
A /sec)2

Question 9: Show that:
dV (r)

dr

∣∣∣∣
r=rmin

= 0

Question 10: Analytically, find the solutions for E − V (r) = 0. These are your rin and rout.

Question 11: Write a function that calculates action, S, numerically for a given E and β; S(E, β)
Use extended formula for the integration, and take N = 1000. Note that, the inputs to that function
are going to be E and β.

You can analytically determine the integral limits using the the expression found in Question 10 for a
given E and β. The function will look like:

double action(double E, double beta) C language

Question 12: Now, define another function that uses action as:

f(E,n, β) = S(E, β)− (n+ 1/2)2π

Note that this function vanishes for En and n for correct β according to Equation 2:

f(En, β, n) = 0

Call this function “funct(E,beta,n)”.

Question 13: Now, write a root finding function that finds the root of f(E, β, n) for the given n and
β. Call this function “energy”, such as:



double energy(double beta, int n) C language

Use binary-search method for root finding. Now, you can solve the Equation 2 for En for a given n
and β. En is the nth energy level for this system.

Question 14: We need to determine β for which the “energy(beta,0)” gives correct E0. Write a
function that finds the root of “E-energy(beta, n)” function for the given E and n. The prototypes
will look like:

double find beta(double E, int n) C language

Call this function with E = −4.477 eV and n = 0 according to the experimental data provided in
above table. Print out the value of β found by this function which will be in angstrom. Hint: beta is

at the order of unity; start your search at β = 1
◦
A.

Note that your latest root-finding function uses another root-finding function that uses a numerical
integration! The optimization of such a problem is important as it may require too much CPU time
when not optimized properly. You can also eliminate one of the root-finding stage with a little effort.

Question 15: Call your energy function for n = [0, · · · , 14] with the above β, and make a table
showing En for these 15 energy levels. Compare your results with the experimental values shown in
the above table. Does this potential gives reasonable results?


